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Executive Summary

This report assesses how well the CMIP6 models simulate teleconnections between
climate drivers and seasonal Australian rainfall and compares their performance to
the CMIP5 models.

El Nifio Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Southern
Annular Mode (SAM) are modes of variability that critically impact life in Australia and risk of
extremes. These modes of climate variability are correlated with significant impacts in the
historical record, for example, droughts during El Nifio years, and flooding rains during La
Nifa years. For this reason, stakeholders are interested in a better understanding of modes
of climate variability and how they are represented in climate models. Understanding the
changes to these modes of variability in a warmer climate is critical to assessing future
regional climate change. For example, are the compounded effects of climate drivers
enhancing warm temperatures? Or will the changing relationship between the drivers reduce
or enhance their impacts? Assessing the interactions between modes in a warmer climate
and what this means for regional climate change will be important to many stakeholder
applications. Climate models are our best available tool to unpack some of these
complex yet critical questions.

Applying information from these state-of-the-art climate models without considering deeper
insights into their performance may be problematic for regional applications. Deeper insights
need to consider the realism of the modes themselves, surveyable in the literature, and how
well each model reproduces local features and remote influences. This area of research is
particularly useful for water resource planning and policy, where it is important to choose
models for downscaling that can predict extreme seasonal variations in rainfall and
temperature. Similarly, this information can inform infrastructure planning, agriculture, local
government planning, ecosystem and natural habitat conservation. Crucially, research into
these climate models will enhance and inform other important sources of climate
change information including multiple regional climate change downscaling projects
that will provide data at useful local scales. This area of research will also provide deeper
insights into some sources of uncertainty for downscaling models, including modes of
climate variability.

The latest generation of coupled climate models (CMIP6) brings together the best available
information from more than 100 climate models. But how well does CMIP6 simulate the 3
main climate drivers that impact Australian climate, and their seasonal relationship to
Australian rainfall?


http://www.bom.gov.au/climate/enso/history/ln-2010-12/ENSO-rainfall.shtml
http://www.bom.gov.au/climate/enso/history/ln-2010-12/ENSO-rainfall.shtml
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We found that collectively there’s an improvement in the simulation of the relationship
between ENSO and IOD events and Australia’s springtime rainfall. This has implications in
projecting future water availability, flood risk, drought, and fire risk. Overall, CMIP6 models
are also able to reproduce the asymmetric relationship between ENSO and eastern
Australian rainfall, with a stronger signal during La Nifia, and weaker during El Nifio years.
However, the large spread in model-to-model behaviour remains a source of uncertainty.
While CMIP6 models have improved in their representation of SAM variability, the simulated
relationship between SAM and Australian rainfall has not materially improved.

The main report discusses the performance of the CMIP multi-model means, noting that
there is a spread in how individual models perform. Hence this report is accompanied by an
extensive Appendix in which each model’s performance is assessed and ranked.
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‘We found that collectively there’s an improvement
in the simulation of the relationship between
ENSO and IOD events and Australia’s springtime
rainfall. This has implications in projecting future
water availability, flood risk, drought, and fire risk.’
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The Coupled Model Intercomparison Project

The Coupled Model Intercomparison Project (CMIP) began in 1995, under the World Climate
Research Programme’s (WCRP) Working Group on Climate Modelling. The sixth phase
(CMIP6) comprises over 100 models from modelling centres in the world and provides a
comprehensive resource for the study of climate variability and projections under a range of
possible future emission scenarios.

Climate models continue to improve in their

‘Climate models representation of climate processes that critically
impact aspects of life in Australia. These processes

continue to Im prove are known to be important for historical climate
In their represen tation extremes and are also expected to be important in

future climate extremes. How they are simulated in

of climate processes climate models matters deeply for informing users
of climate change information. Due to the many

th at cr Itl Cal ly I m p act variables that factor into the climate, even the most

as peCtS Of | |fe | n advanced climate models can have specific biases
and errors that affect their ability to simulate

Australia.’ regional climate. Understanding and accounting for
these adds strength to any assessment using these
model data.

Modelling Australia’s climate drivers

This report evaluates the progress made in the most recent set of CMIP6 models, with
a focus on how well they simulate the climate drivers most pertinent to Australia’s
climate: El Nifio Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the
Southern Annular Mode (SAM).

Several Australian-led studies have briefly evaluated ENSO, IOD and SAM representation in
CMIP6 models, namely Grose et al. (2020), McKenna et al. (2020) and di Virgilio et al.
(2022). In recent years it has also become increasingly evident that climate driver
interactions are extremely important. When 2 or more climate drivers operate concurrently
the consequences can be severe, such as the strong El Nifio, positive IOD, and negative
SAM culminating in the hot and dry spring and early summer of 2019-20. On the other end
of the spectrum, and equally significant, are events like the extreme wet spring and summer
of 202122 across eastern Australia, partly driven by two consecutive La Nifia events, a
negative 10D, and positive SAM. As such, this report also makes some progress into
evaluating such climate driver interactions in CMIP6, but further work is needed to explore
these in detalil.

Climate Systems Hub | Co-design guide 2023 5
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Why do we need model evaluation?

In every generation of climate models,
improvements are made to the models’ physics
schemes, resolution, and/or parameterisation
schemes. As these changes are made, the
models’ ability to simulate various processes,
such as climate drivers or the driver
teleconnections to regional rainfall, change
accordingly. While the best outcome is
always an improvement to the

representation of climate processes,
sometimes improving one aspect of the
model degrades another. For this reason, it is
important to conduct a comprehensive
evaluation of climate processes and
teleconnections.

In this report, we evaluate two aspects of ENSO, IOD, and SAM representation. Firstly, it is
important to measure how well the large-scale climate drivers themselves are simulated to
better understand how these drivers are projected to change. For example, previous
research has shown that models that have a better representation of ENSO tend to project
increased ENSO-related sea surface temperature variability in the future (for more
information see Cai et al. 2018).

Secondly, an evaluation of how well the models simulate the relationship between these
drivers and regional rainfall and climate (such as their teleconnections) is crucial. For
example, when selecting CMIP models for downscaling in a particular region, it is important
to know which models perform best in simulating the relevant climate drivers and whether
the relevant drivers' teleconnections to the region of interest are
represented correctly. For instance, choosing global climate
models that can more accurately simulate historical
variability of these drivers and their regional
teleconnections provides us with greater
confidence in downscaled projections. A recent
study evaluated CMIP6 models for selection in
downscaling activities. The 7 selected models
were chosen for their accuracy in simulating
historical climate, as well as their ability to
represent a range of possible climate futures
(Grose et al. 2022). This report complements
studies such as these by presenting a more
detailed investigation into the representation of
particular climate drivers and their regional
teleconnections.

Climate Systems Hub | Co-design guide 2023 6
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By understanding the relative strengths and weaknesses of
state-of-the-art climate models, we chart a course
towards a more nuanced use of climate model
information; one where understanding of climate
processes and their interactions in climate models
is used to carefully assess and select information
that will be fit for purpose, reliable, salient, and
actionable climate change science.

In the following sections, evaluations of ENSO,
I0OD, and SAM metrics and teleconnections are
presented for the CMIP6 multi-model means
(MMMs). We do note here, that in some seasons,
there is a large inter-model spread in the
representation of the metrics and teleconnections. Model-
by-model results are shown in the Appendix.

What's new in CMIP6?

Climate model development is an ongoing science - no model is perfect. Researchers
around the world strive to consistently improve the representation of climate processes. Due
to the immense complexity of the task, this is an iterative and incremental process. It is also
not linear - in each iteration, as we detail further in this report,
some aspects are improved, while others are not.

In progressing from CMIP5 to CMIP6, there were 2
major differences outside of the exact details of each
model: the inclusion of Shared Socioeconomic
Pathways (SSPs) as improved emission scenarios,
and an increase in the number of models included.
These differences, which occurred independently of
each other, allow us to frame projections in a more
meaningful way. Firstly, CMIP6 used the newly
developed SSPs to describe the range of plausible
futures out to 2100. This differs from the emissions-
based scenarios of CMIP5 by framing future scenarios in
terms of socioeconomic narratives and policy responses,
rather than purely in terms of greenhouse gas emissions. Additionally, the
sheer number of available models has also increased — CMIP6 comprises over 100 models
from more than 50 modelling centres worldwide. This is almost double the size of CMIP5. A
larger ensemble of models offers more statistical confidence in projections or evaluation of
climate processes.

n

Many studies have evaluated the performance CMIP5 and CMIP6 in various aspects such
as the sensitivity of the climate system to increased greenhouse gases, and projections of
global and regional temperature and rainfall changes (for example Dong et al. 2020;
Gutierrez et al. 2021 & Deng et al. 2021 among others). A particularly interesting result is

Climate Systems Hub | Co-design guide 2023 7
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that CMIP6 models project a larger global .
temperature increase in response to a Overall, CMIP6 models have also

doubling of global CO2 levels than do been found to be more skilful at
CMIP5 models. This increased sensitivity Simu'a’ting global tem perature
to higher CO2 levels is due in part to a ’

o . extremes.
reduction in simulated cloud cover in some
models and is an area of ongoing research
(Zelinka et al. 2019). Overall, CMIP6 models have also been found to be more skilful at
simulating global temperature extremes (Fan et al. 2020). CMIP6 also offers a more realistic
representation of tropical Pacific sea-surface temperature patterns (Grose et al. 2020). This
contributes to an improved simulation of the ENSO, which drives a large part of Australian
temperature and rainfall variability.

Not all aspects of simulating the climate system are improved. In this report we also
examine the simulation of the Indian Ocean Dipole and Southern Annular Mode, and
their associated links with Australian climate. While some aspects of these have
improved, others have not. The Southern and Indian Oceans are particularly complex
regions which have well-known, long-standing model biases. Work is already underway to
further improve models for the next phase of CMIP.

‘CMIP6 also offers a more realistic representation
of tropical Pacific Sea surface temperature
patterns. This contributes to an improved
simulation of the El Nifio Southern Oscillation,
which drives a large part of Australian temperature
and rainfall variability.’

Climate Systems Hub | Co-design guide 2023 8
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Why do we need so many models?

The climate system is influenced by many processes occurring at a range of spatial and
time scales, from thousands of kilometres to mere metres, and from multiple years to
minutes. Climate models simulate these processes by dividing the atmosphere and
ocean up into hundreds of thousands of grid cells. Within each cell, the model solves
mathematical equations that govern the fluid flow, chemical interactions (for example,
greenhouse gases, aerosols), energy balance (such as solar radiation, incoming and
outgoing atmospheric radiation), and other complex processes. These equations are solved
at each incremental time step, which allows the climate system to be simulated over a
period of time.

In a perfect model, each cell and time step would be fine enough to resolve the smallest
scale processes and would give us an extremely accurate representation of the climate
system. In reality, the computational resources available to us are far from sufficient to
allow this. Current global climate models have a spatial resolution of approximately
10s of kilometres per grid cell and run in time steps of approximately 30 minutes. To
get around this, modellers approximate, or ‘parameterise’, the fine-scale processes that
occur. Each model has different parameterisation schemes, which yield slightly different
versions, or 'realisations' of the climate system. Analysing the statistical properties of a
group of models (known as an ensemble of models) is one of several approaches that allow
us to assign confidence to climate model projections. For example, if the majority of models
project a rainfall increase in a region, this could provide higher confidence in the projection.

Additionally, within the same model, internal model variability can yield different realisations
of the climate system when simulations are configured with different initial states. This often
means that most modelling groups will not just provide output from one simulation from their
model, rather they provide the output from a group (ensemble) of simulations.

A goal of climate modelling is to accurately constrain projections to as narrow a
range as possible. However, knowing that no single model is perfect and taking into
account internal variability, it is important to have an ensemble of models with
diverse model physics and parameterisation schemes. This provides us with
projections which span a range of plausible futures, minimising the chances of
unexpected future climate events.
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El Nifio Southern Oscillation and its impact on Australian climate

Evaluation of ENSO metrics in CMIP6

ENSO, originating in the tropical Pacific, has a major influence on global climate, and in
particular, strongly influences rainfall and temperature over northern and eastern Australia.
Grose et al. (2020) found that in CMIP6, the mean state of the tropical Pacific and the
amount of year-to-year variability along the eastern equatorial Pacific were more accurately
simulated than in CMIP5. However, the CMIP6 models tend to overestimate the year-to-year
variability along the western and central equatorial Pacific, leading to an overestimation of
ENSO variability across most of the equatorial Pacific.

ENSO - EL NINO SOUTHERN OSCILLATION

EL NINO LA NINA

OCEANS COOLER OCEANS WARMER
THAN NORMAL THAN NORMAL

REDUCED INCREASED
CHANCE OF RAIN CHANCE OF RAIN

WEAKER STRONGER
TRADE WINDS TRADE WINDS

P R—

Figure 1 The two phases of ENSO and their associated impacts on Australian rainfall

CMIP6 has improved the well-known bias in the west Pacific (known as the ‘cold tongue
bias’) compared to previous generations of climate models (McKenna et al. 2020). The cold
tongue bias was known to lead to spatial biases in ENSO teleconnections to Australia (Cai et
al. 2010). The improvement in ENSO cold tongue bias is one of the reasons for improved
teleconnections to Australia (Grose et al. 2022). However, other aspects of ENSO have not
improved significantly, the simulation of realistic seasonality being one of them. The ENSO
seasonal cycle in CMIP5 is longer than the observed, which produces stronger
teleconnections to the Australian monsoon, particularly at the tails of ENSO events (Jordain
et al. 2013). Also, one-third of CMIP5 models simulate ENSO mature phase outside the
observed November to January window (Taschetto et al. 2014). This seasonality has not

Climate Systems Hub | Co-design guide 2023 10
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improved in CMIP6 (McKenna et al. 2020). Asymmetry and nonlinearity in the eastern
Pacific remain underestimated in climate models.

It is also important to note that the tropical

ocean basins do not operate in isolation. ‘ENSO, originating in the tropical
For instance, biases in the representation Pacific, has a major influence on
of the Indian Ocean Dipole are related to g|0ba| climate, and in particular,
the Pacific cold tongue biases in CMIP5, : .

while CMIP6 biases in the Pacific warm strongly influences rainfall and
pool are shown to dominate the links to temperature over northern and
IOD biases (McKenna et al. 2020). eastern Australia.’

ENSO teleconnections to Australian
climate

Grose et al. (2020) and di Virgilio et al. (2022)
evaluated ENSO teleconnections for austral
winter to spring (June-November) rainfall over
various Natural Resource Management (NRM)
regions. They found that most CMIP6 models
underestimate these teleconnections, particularly
over northern and eastern Australia, although they
did find an improvement compared to CMIP5, with
fewer outlier models.

Here, we evaluate the teleconnections for each season, and over all of Australia. Rainfall
observations are taken from the Australian Gridded Climate Dataset (AGCD, Evans et al.
2020). As well as looking at the teleconnections between rainfall and all ENSO years, such
as both El Nifio and La Nifia events, we also look at the relationship between rainfall and El
Nifio and La Nifia events separately. This is because there is a known asymmetry in the
relationship between rainfall and ENSO, with La Nifia events generally having a larger
impact on rainfall than El Nifio events (Cai et al. 2010, 2012; King et al. 2014; Chung &
Power 2017).

Full ENSO spectrum

To evaluate the teleconnections between ENSO and rainfall in all years, we calculate the
correlation between seasonal averages of rainfall and the Nifio 3.4 sea surface temperature
index, which is taken to represent ENSO. In observations (Figure 2) the teleconnections
between ENSO and Australian rainfall are strongest during austral spring (September-
November). This seasonality is reproduced in the CMIP5 and CMIP6 multi-model means
(MMM), with a noticeable improvement in the spring teleconnection in CMIP6. There is also
a small improvement in the strength of the teleconnections in austral summer (December-
February), particularly over north-east Australia. However, the models simulate the austral
winter (June-August) teleconnections poorly. In observations, winter is the second strongest
teleconnected season outside of spring.

1 We use the Nifio 3.4 index as a measure of ENSO variability. It is the deviation from average sea surface
temperatures in the central equatorial Pacific between 5S-5N and 190E-240E.

Climate Systems Hub | Co-design guide 2023 11
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Recognising that the MMM does not capture the spread in each individual model’s
performance, we also show here in Figure 3 the range of spatial correlations between each
model's teleconnection pattern and the observed teleconnection pattern for each season
over land only in the region shown in Figure 2. This is a measure of how well each model
can simulate the observed patterns shown in Figure 2. A perfect match between
observations and models would yield a spatial correlation of 1, however this is virtually
impossible as we are dealing with different realisations of the climate system in the climate
models while comparing the model output with one realisation of reality.

As discussed above, there is no perfect model, and the range of spatial correlation
coefficients shown in Figure 3 reflects the current range of model skill. The skill of each
model varies seasonally, as do the physical processes governing the teleconnections. The
large range in the modelled responses remains a source of uncertainty in projections, though
some seasons (such as summer) are better constrained than others. We note also that
spatial correlation is only one of several methods for measuring skill. The improvement in
CMIP6 during spring seen in Figure 2 is also apparent in Figure 3.

Maps of each individual models’ teleconnections are shown in the Appendix (Figures Al-
A4), ranked according to spatial correlation (highest to lowest).

(a) (b) () (d)
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Figure 2 Seasonal correlation between the Nifio 3.4 index and precipitation in (a-d) AGCD observations
from 1950 to 2005, (e-h) CMIP5 and (i-l) CMIP6 models. In the top row (observations), stippling indicates
statistical significance at the 90% confidence level according to a t test. Stippling in the bottom two rows shows
areas where 70% of models agree on the sign of the correlation and where 70% of models have a significant
correlation at the 90% confidence level.
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Figure 3 Spatial correlation between the observed Australian region ENSO teleconnection patterns and
those in the CMIP5/6 models for each season. A perfect match between modelled output and observations
would yield a correlation coefficient of 1. The boxes and whiskers indicate the spread of models, with the filled
boxes showing where 50% of the models lie, and the whiskers showing the remaining 25% of models. Circles
indicate outliers.

El Niflo/La Nifia asymmetry

We also evaluate the models' ability to reproduce observed ENSO asymmetry by evaluating
the teleconnections separately for positive and negative Nifio3.4 years. El Nifio events
correspond to strongly positive Nifio3.4

indices, and La Nifia events correspond ‘During neg ative Nifio3.4 years
to strongly negative Nifio3.4 indices. As ' ’

ENSO peaks in the summer season, strong teleconnections occur

these years are defined to be whenthe ~ Over northeastern Australia

seasonal mean summer Nifio 3.4 index  during summer, and

>0 and <0. Then, in a given year, the

correlation between concurrent )
-~ - ’

seasonal means of Nifio 3.4 and rainfall ~ SPI1MNQ

is calculated (for example, spring

rainfall is correlated with spring Nifio 3.4).

northwestern Australia during

It is apparent that the pattern of seasonal teleconnections when considering positive and
negative Nifio3.4 years separately are significantly different to the teleconnection patterns
using all years. During summer, there is a significant teleconnection to rainfall during
negative Nifio3.4 years, but not during positive Nifio3.4 years. Conversely, during winter,
there is a significant teleconnection to rainfall during positive Nifi03.4 years, but not during
negative Nifio3.4 years.

During negative Nifio3.4 years (Figure 4), strong teleconnections occur over eastern
Australia (summer), western and southern Australia (autumn) and northern and south-
eastern Australia (spring; Figure 4). During positive Nifio3.4 years (Figure 5), the extent of

Climate Systems Hub | Co-design guide 2023 13
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the regions displaying significant teleconnections is reduced in summer and spring.
Interestingly, during autumn, positive Nifio3.4 years exhibit a positive correlation in small
regions of south-western and central Australia, indicating a tendency for rainfall increase
during this season. During winter, central and eastern Australia exhibit a significant
correlation during positive Nifio3.4 years only. One caveat to note is that there is a
correlation between Nifio 3.4 and Dipole Mode Index (DMI), which makes it difficult to
disentangle the asymmetry between ENSO years and 10D years. This is discussed further in
the next section.

A previous evaluation of CMIP5 models showed that the models tended to simulate the
Pacific warming during La Nifia too close to Australia, hence overestimating the impact of La
Nifia on Australian rainfall (Weller & Cai, 2013). Figures 4 and 5 show that overall, the
CMIP5 and CMIP6 MMMs do capture the positive/negative Nifio3.4 asymmetry, exhibiting
stronger teleconnections during negative Nifio3.4 years from September to May. One
noticeable improvement in the CMIP6 MMM is a strengthening in the summer and spring
correlation over northern and north-east Australia for negative Nifl03.4 years. However, the
large inter-model spread remains problematic and is a reason why the MMM panels in
Figures 4 and 5 lack any stippling. Model-by-model correlations are presented in the

Appendix (A5-A12).
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Figure 4 Seasonal correlation between the Nifio 3.4 index and precipitation in (a-d) AGCD observations
from 1950 to 2005, (e-h) CMIP5 and (i-I) CMIP6 MMM (top two rows) and for negative Nifio3.4 years only. In
observations, stippling indicates statistical significance at the 90% confidence level according to a t test.Stippling
in the bottom two rows shows areas where 70% of models agree on the sign of the correlation and where 70% of
models have a correlation significant at the 90% level.
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Figure 5 | Seasonal correlation between the Nifio 3.4 index and precipitation in (a-d) AGCD observations from
1950 to 2005, (e-h) CMIP5 and (i-l) CMIP6 MMM for positive Nifio3.4 years only. In observations, stippling
indicates statistical significance at the 90% confidence level according to a t test. Stippling in the bottom two rows
shows areas where 70% of models agree on the sign of the correlation and where 70% of models have a
correlation significant at the 90% level.

Key improvements in ENSO simulation include
improvements in springtime teleconnections and
strengthening in the spring and summer
teleconnections over northern and north-east
Australia for La Nifia years.
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Investigating ENSO representation in ACCESS

Australia’s contribution to CMIP6 is the Australian Community Climate and Earth System
Simulator (ACCESS). There are 2 versions of ACCESS currently in use — ACCESS-CM2 and
ACCESS-ESM1.5. Detailed analyses of the ACCESS models’ performance can be found in
Rashid et al. (2022).

While both models have shown some improvements from previous versions, such as more
realistic rainfall over land (ACCESS-CM2) and an improved carbon cycle (ACCESS-ESM1.5),
both models suffer from the common model bias of a biennial ENSO. The tropical Pacific
oscillates between El Nifilo and La Nifa every 3-7 years, however many models, including
ACCESS-CM2, simulate this oscillation occurring every 2 years. This leads to a less realistic
representation of tropical Pacific variability and an underestimation of decadal-scale variability. In
this project, this problem has been linked, at least partially, to how the model simulates the
tropical Atlantic and the teleconnections between the tropical Atlantic and Pacific basins. To do
this, 2 independent sets of experiments were conducted.

Tropical Atlantic pacemaker (Bi et al. 2022)

In this experiment, the model was run from 1970 to 2014 with tropical Atlantic sea surface
temperatures set to observed values, and with the ocean elsewhere free to vary. This style of
experiment is typically called a ‘pacemaker’ run. The authors found that fixing the Tropical
Atlantic improved the model’s simulation of ENSO periodicity, reducing the biennial ENSO bias
and shifting the ENSO period to more realistic values (for example, from 2 to 4 years).

Switching off the Tropical Atlantic (Chung et al. 2023)

In this experiment, the model was run for 400 years under pre-industrial conditions, with all ocean
variability in the Tropical Atlantic suppressed, or ‘switched off’. The authors found that doing this
also reduced the biennial ENSO bias, though not completely. Switching off the Tropical Atlantic
altogether also reduced the overall variability of ENSO and increased the amount of decadal-
scale variability in the Tropical Pacific, highlighting the role of large-scale inter-basin interactions.

These 2 complementary experiments show that improving the representation of the Tropical
Atlantic in the model would help to improve the simulation of ENSO. In doing this, the
representation of decadal-scale variability in the Pacific would also improve, allowing for more
accurate studies of longer-term climate processes.
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The Indian Ocean Dipole and its impact on Australian climate

Evaluation of the IOD in CMIP6

The Indian Ocean Dipole plays an important role in affecting precipitation and influencing
droughts and floods in Australia (Ummenhofer et al. 2009, 2011, King et al. 2020, Liguori et
al. 2022). Therefore, it is crucial that climate models accurately represent the characteristics
of the Indian Ocean variability and teleconnections to Australia. Despite improvements in
IOD representation from previous generations of climate models (CMIP3 to CMIP5 through
CMIP6; Jourdain et al. 2013), there are still underlying biases that compromise a realistic
simulation of Indian Ocean processes and teleconnections to Australian climate (Jourdain et
al. 2013; McKenna et al. 2020; Grose et al. 2020). CMIP5 and CMIP6 models simulate too
strong winds over the Indian Ocean and overestimate 10D amplitude. Nearly half of CMIP6
models also do not accurately simulate the observed skewness of the 10D, for example,
positive IOD events tend to be stronger than negative 10D events (Jourdain et al. 2013;
McKenna et al. 2020). The observed seasonality of the 10D is overall well captured by
climate models, with a peak in austral spring (September-November). However, 10D tends
to peak one month earlier in CMIP6 (September instead of October) than observations and
CMIPS5, likely affecting teleconnections to Australia. This suggests there are still unresolved
processes in the Indian Ocean that contribute to those model biases in climate models.

IOD - INDIAN OCEAN DIPOLE

POSITIVE PHASE NEGATIVE PHASE

OCEANS COOLER OCEANS WARMER
THAN NORMAL THAN NORMAL

REDUCED INCREASED
CHANCE OF RAIN CHANCE OF RAIN

Figure 6 | The two phases of IOD and their associated impacts on Australian rainfall.
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IOD teleconnections to Australian climate

Most CMIP models underestimate the IOD teleconnections to Australian rainfall. Di Virgilio
(2022) noted a large spread in the ability of CMIP6 models to simulate this teleconnection
and found that some models that simulated the ENSO-rainfall teleconnection well, performed
poorly in simulating the I0D-rainfall relationship. Meanwhile, the CMIP6 models exhibited
improved teleconnection in southern Australia and rangelands NRM regions, but the models
that do so do not necessarily simulate the ENSO teleconnections well (Grose et al. 2020; di
Virgilio 2022).

As with ENSO, the teleconnections

‘Positive IOD years tend to have a between the 10D and Australian
larger impact on Australian rainfall rainfall for all years are measured
than neg ative 10D years through the correlation between

seasonal means of the DMI? and
rainfall. These correlations are
spring.’ strongest during spring (Figure 7).
The observed I0D-rainfall
teleconnection breaks down during summer and autumn (though we show it for
completeness), and this is reflected in the CMIP models. Compared to CMIP5, the CMIP6
MMM exhibits an improvement in the overall strength of the spring and winter
teleconnections. However, there is an extremely large spread in the individual model
performances, as shown by the seasonal spatial correlation between modelled and observed
teleconnection patterns (Figure 8). During winter, some CMIP6 models exhibit a marginal
improvement in the spatial representation of teleconnection patterns, however there is no
improvement during spring. For winter and spring, the total inter-model spread is wider in
CMIP6 than in CMIP5, although for spring more models fall within a narrower range, as
indicated by the narrower box (Figure 8). Maps of each individual models’ teleconnections
are shown in Appendix (Fig. A6-A9), ranked by spatial
correlation.

particularly in southern Australiain

There is also an asymmetry in the observed
teleconnections between positive IOD and negative
IOD years. Positive 10D years tend to have a
larger impact on Australian rainfall than negative
IOD years, particularly in southern Australia during
spring (Cai et al. 2010, 2012). Representing this
asymmetry is complex as the physical

mechanisms underlying the teleconnections
between the Pacific and Indian Ocean differ for El
Nifilo and La Nifia and for positive and negative 10D
years (Cai et al. 2010, 2012). A previous study

2 The strength of the 10D is measured through the Dipole Mode index (DMI), calculated as the difference in sea
surface temperature between a region in western equatorial Indian Ocean (50° E-70° E and 10° S-10° N) and in
the south-east Indian Ocean (90° E-110° E and 10° S-0°).
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showed that CMIP5 models managed to simulate the IOD asymmetry, however the models'
performance was distorted by biases in the representation of ENSO (Weller & Cai 2013).
However, as ENSO and the IOD are known to co-vary, disentangling the impacts of the 2 is
not straightforward (Liguori et al. 2022). In our analysis period (1950-2005), many negative
IOD years coincide with La Nifia years, and vice versa. For this reason, in this report, we do
not evaluate this asymmetry in detail as it is difficult to disentangle the seasonal impacts of
the two.
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Figure 7 | Seasonal correlation between the DMI index and precipitation in (a-b) AGCD observations from 1950
to 2005, (c-d) CMIP5 and (e-f) CMIP6 models. In the top row (observations), stippling indicates statistical
significance at the 90% confidence level according to a t test. Stippling in the bottom two rows shows areas
where 70% of models agree on the sign of the correlation and where 70% of models have a significant correlation
at the 90% level.
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Figure 8 | Spatial correlation between the observed Australian region IOD teleconnection patterns and
those in the CMIP5/6 models for each season. A perfect match between modelled output and observations
would yield a correlation coefficient of 1. The boxes and whiskers indicate the spread of models, with the filled
boxes showing where 50% of the models lie, and the whiskers showing the remaining 25% of models. Circles
indicate outliers.

Key improvements in IOD simulation: improvement
in the overall strength of winter-spring
teleconnections to rainfall, however large inter-
model spread remains.
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The Southern Annular Mode and its impact on Australian climate

Evaluation of SAM metrics in CMIP6

The Southern Annular Mode (SAM) is the leading mode of variability in the Southern

Hemisphere extratropics and describes the north-south movement of the westerly wind belt
around Antarctica. Positive SAM phases are characterised by stronger westerlies which are
contracted towards higher latitudes and are associated with stronger storm tracks. Opposite
conditions are observed during negative SAM

phases. It is important to correctly simulate ‘The Southern Annular Mode (SAM)

the SAM in climate models because SAM is the Ieading mode of variability in

impacts many regional surface climates, .
including Australia (Meneghini et al. 2007, the Southern Hemlsphere

Hendon et al. 2007), and also because future ~ €xtratropics’

projected changes to the midlatitude

circulation are expected to strongly influence future SAM. Zheng et al. (2021) evaluated
CMIP6 models in their ability to capture the SAM spatial pattern and found that the basic
features are well reproduced in the MMM, with the highest simulation skill in summer and
lowest skill in autumn. They found that in general, models slightly overestimate the SAM
amplitude in most seasons except in autumn when the amplitude is underestimated. They
linked this bias to a poor simulation of the asymmetric part of SAM, which is a key
component for the simulation of the overall spatial pattern of the SAM. Indeed, while the
SAM is predominantly zonally symmetric, some zonal asymmetries do exist in its structure,
particularly outside of summer.

SOUTHERN ANNULAR MODE (SAM)

NEGATIVE PHASE POSITIVE PHASE

WETTER
vl | SUMMER T
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NORMAL
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N
WINTER ‘ o n‘!
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DRIER -
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DRIER

Figure 9 | The two phases of SAM and their associated impacts on Australian rainfall.
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Another way of evaluating the SAM is to examine changes in the location and the speed of
the westerly jet. This is a midlatitude wind belt that encircles the globe, flowing from west to
east and is associated with storm tracks that bring rainfall. It persists year-round and is
typically measured in terms of its strength and latitude. While the latitudinal shift of the winds
is associated with the phase of SAM, its strengthening or weakening does not necessarily
co-occur with changes in its latitude. It can therefore be useful to diagnose these jet
diagnostics individually (Baker et al. 2017, Bracegirdle et al. 2020). Figure 10 shows that
while the mean jet speed is relatively well simulated in CMIP5 and CMIP6 models (with
slightly larger spread in the CMIP6 ensemble), models tend to simulate a jet that is too
equatorward, particularly in winter (with a MMM bias exceeding 3° latitude for both CMIP
ensembles). However, this bias is significantly reduced in CMIP6 compared to CMIP5 in the
annual mean and in all seasons (except winter) along with a smaller intermodel spread
(Goyal et al. 2021). The variability in these metrics is also remarkably well simulated (not
shown), in line with Bracegirdle et al. (2020) who find an improvement in CMIP6 jet variability
that they quantify through a reduced bias in the decorrelation timescale of the SAM (such as
a less persistent SAM).

a) Mean jet location

X Observations

—48 ﬁ | CMIP5 models

5 ‘ Sl CMIP6 models
~— =50 _— n
2 |
X
—52 x n ! u
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b) Mean jet speed
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—_= M | X u
x [ . x | i
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Figure 10 | Annual and seasonal mean (a) position and (b) speed of the westerly jet from 1979 to 2005 in
ERAS reanalyses, CMIP5 and CMIP6 models. Jet speed is defined every month as the maximum of zonal
mean surface zonal winds between 10°S-75°S, and jet position indicates the latitude of this maximum.
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SAM Trends in CMIP6

In terms of trends, we find a slight improvement in the CMIP6 simulation of annual mean
SAM and jet trends, although Figure 11 shows this may stem from compensating errors in
different seasons. SAM trends are generally underestimated in both CMIP5 and CMIP6
models, particularly in autumn and spring, when the SAM is known to be more asymmetric.
Models successfully capture the poleward shift and intensification of the jet that has been
observed in summer over the past decades due to ozone depletion (IPCC, 2021,
Morgenstern, 2021). However, trends in other seasons are too weak or uncertain as models
fail to simulate the seasonality of observed trends outside of summer.
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Figure 11 | Annual and seasonal mean trends in (a) SAM (define), (b) position and (b) speed of the westerly jet
from 1979 to 2005 in ERAS reanalyses, CMIP5 and CMIP6 models. Jet speed is defined every month as the
maximum of zonal mean surface zonal winds between 10°S and 75°S, and jet position indicates the latitude of
this maximum.

SAM teleconnections to Australian climate

The impact of SAM on Australia’s climate is closely linked to the north-south movement and
strength of the westerly jet. A positive SAM is associated with a poleward contraction of the
jet and storm track, which leads to dry conditions across south-east and south-west parts of
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Australia (Cai and Cowan 2006; Hendon et al. 2007; Hope et al. 2010). In summer and
spring, the poleward shift of the jet allows easterlies to bring moist onshore flow to eastern
Australia, whereas in winter the jet is located closer to the equator which allows weather
systems to reach and affect southern Australia (Hendon et al. 2007).

CMIP5 and CMIP6 models can capture the main features and seasonality of the SAM
influence on Australian rainfall, with positive SAM associated with wetter conditions across
eastern Australia particularly in spring and summer, and more pronounced drying in
southwest western Australia, Tasmania, and Victoria in winter (Figure 12). However, the
MMM correlation patterns are slightly weaker for CMIP6 compared to CMIP5, due to a larger
intermodel spread, particularly in winter and spring (Figure 13). Maps of the spatial
correlation between modelled and observed teleconnections are shown in the Appendix. A
few outlier CMIP6 models fail to capture any part of the relationship (for example, INM-CM5-
0, MIROCS6, GISS-E2-1-H — see Figures A17-A20).

The SAM and zonal mean jet diagnostics used here are relevant to examine hemispheric-
scale climate impacts, however we need to bear in mind that the SAM as well as the jet
contain important spatial asymmetries (particularly in seasons outside of summer).
Evaluating the ability of climate models to simulate more sectoral jets will be of relevance to
current and future climate impacts in Australia.
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Figure 12 | Seasonal correlation between the SAM index (Marshall et al. 2009) and precipitation in (a-d) AGCD
observations from 1950 to 2005, (e-h) CMIP5 and (i-l) CMIP6 models. In observation,s stippling indicates
statistical significance at the 90% confidence level according to a t test. Stippling in the first bottom two rows
shows areas where 70% of models agree on the sign of the correlation.
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Figure 13 | Spatial correlation between the observed SAM teleconnection patterns and those in the CMIP5/6
models for each season. A perfect match between modelled output and observations would yield a correlation
coefficient of 1 The boxes and whiskers indicate the spread of models, with the filled boxes showing where 50%
of the models lie, and the whiskers showing the remaining 25% of models. Circles indicate outliers.

Key improvements in SAM simulation include
improved simulation of the location of the westerly
wind jet associated with the phase of SAM,
however large inter-model spread leads to poorly
simulated teleconnections to rainfall in all

seasons.
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Ranking models and preliminary links to ongoing downscaling efforts

In Table 1 we list the 5 models which have the highest spatial correlation between modelled
and observed teleconnections, for each driver, and for each season, for a single ensemble
member. While there are some limitations to this selection criteria, it provides a good
indication of how well the teleconnections are simulated. For completeness, we include all
seasons for all drivers, even though the strength of teleconnections is seasonally dependent
(for example, the 10D breaks down in summer and autumn). To compare this to other
studies, the models which are part of the 7 selected for optimal downscaling by Grose et al.
(2023) are shown in blue, while models which are in the same family are shown in orange.
While Grose et al. (2023) did not base their selection purely on model performance, it is
interesting to note that many of the selected models (or family of models) also simulate
teleconnections particularly well in spring, and less so in autumn and winter. Other models
which perform ‘well' according to this metric include models from the CESM2, TalESM, AWI,
and IPSL-CM6A families.

Table 1: The 5 models which have the highest spatial correlation between modelled and observed
teleconnections, for each season. Models in bold have also been selected as the top 7 downscaling choices in
Grose et al. (2023), and models in italics belong to the same family of models as the top 7 choices.

ENSO (all
years)

Negative
Nifio3.4 years

Positive
Nifio3.4 years

10D

SAM

Summer
TalESM1
EC-Earth3-
AerChem
CAM5-CSM1-0
IPSL-CM6A-LR-
INCA
CESM2-WACCM-
FVv2

CNRM-ESM2-1
E3SM-1-1
CAMS-CMS1-0
TalESM1
CMCC-CM2-SR5

CESM2-WACCM-
Fv2
EC-Earth3-Veg-LR
CESM2
CESM2-WACCM
AWI-CM-1-1-MR

CESM2-FV2
CIESM
AWI-CM-1-1-MR
MPI-ESM1-2-LR
MIROC-ES2L

Autumn
GFDL-CM4
MIROC6
GISS-E2-1-H
IPSL-CM6A-LR
NorESM2-MM

MCM-UA-1-0
GISS-E2-1-G-CC
CAS-ESM2-0
IPSL-CM6A-LR
GISS-E2-1-G

FGOALS-f3-L
EC-Earth3-
AerChem

NESM3

TalESM1
CESM2-WACCM-
FVv2

IPSL-CM6-LR-
INCA
MIROC-ES2L
MPI-ESM1-2-HR
KACE-1-0-G
E3SM-1-1
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Winter
CESM2-FV2
ACCESS-CM2
MIROC6
NorCPM1
E3SM-1-0

UKESM1-0-LL
TalESM1
EC-Earth3
IPSL-CM6A-LR
AWI-CM-1-1-MR

BCC-ESM1
AWI-ESM-1-1-LR
INM-CM5-0
CESM2
ACCESS-CM2

E3SM-1-1-ECA
FIO-ESM-2-0
ACCESS-ESM1.5
CESM2-WACCM
GFDL-ESM4

NESM3
AWI-CM-1-1-MR
GISS-E2-1-H
EC-Earth3-Veg
MPI-ESM2-1-2-
HAM

Spring
ACCESS-CM2
E3SM1-1
E3SM1-1-ECA
CESM2-WACCM-
FV2
FGOALS-f3-L

IPSL-CM6A-LR-
INCA
MRI-ESM2-0
E3SM-1-0
TalESM1
IPSL-CM6A-LR

BCC-ESM1
EC-Earth3-CC
TalESM1
EC-Earth3-Veg
EC-Earth3-Veg-LR

FGOALS-f3-L
EC-Earth3-CC
GFDL-ESM4
SAMO-UNICON
ACCESS-CM2

EC-Earth3-Veg-LR
E3SM-1-1-ECA
EC-Earth3-
AerChem
BCC-CSM2-MR
CMCC-CM2-HR4
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Interactions between ENSO, 10D, and SAM, and projections to 2100

In recent years it has become especially apparent that compound events arising from the
interactions between ENSO, IOD, and SAM can have major consequences on rainfall,
temperature, and other climate variables (Wang & Cai 2020; Liguori et al. 2022).
Additionally, the different ‘flavours’ of ENSO yield different teleconnections to Australian
rainfall. Here, ‘flavour’ refers to whether the sea surface temperature warms closer to the
central or eastern equatorial Pacific during an El Nifio event — an important detail which can
affect spring and summer rainfall in very different ways (Santoso et al. 2019). A full
evaluation of these nuances and interactions in CMIP6 will provide confidence in the models’
ability to simulate these compound climate events and will be carried out in Climate Systems
Hub Research Plans 2022-2024 (under projects Extreme events explained and Extreme
climate: dry, wet, hot-and-dry).

How will these drivers and teleconnections change into the future?

Recent work has found that approximately half of the regions which have temperatures and
precipitation impacted by ENSO in summer are projected to experience an amplification of

these impacts under a high emissions future (McGregor et al. 2022). The study also found

that the scale of changes to these teleconnections is larger at higher warming levels.

‘In recent years it has become especially apparent
that compound events arising from the
interactions between ENSO, IOD, and SAM can
have major consequences on rainfall, temperature,
and other climate variables.’
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Final remarks

The representation of climate drivers in CMIP6 and their interactions with Australian climate is a
complex field of study that we have aimed to provide a brief insight into in this report. There are
many avenues for further investigation, as well as more detailed applications of CMIP data.

Our evaluations have shown that CMIP6 exhibits a significant improvement to springtime
teleconnections between ENSO and Australian rainfall. Both CMIP5 and CMIP6 models are
generally able to capture the asymmetry in the impacts of El Nifio and La Nifia events, with
some improvement in the spring and summertime teleconnections to northern and north-east
Australia during La Nifa years. However, a large inter-model spread in the simulation of these
teleconnections remain, and the simulation of autumn and wintertime teleconnections have not
improved.

The simulation of IOD teleconnections is more of a mixed bag. While the overall strength of
winter and springtime teleconnections has improved in CMIP6, the spatial representation
of these teleconnections has not. The inter-model spread in 10D teleconnections in CMIP6 is
larger than in CMIP5, increasing the uncertainty in future projections.

While the representation of SAM variability has improved considerably in most seasons,
teleconnections between SAM and Australian rainfall appear to have degraded from CMIP5 to
CMIP6 due to substantially larger inter-model spread, particularly in winter and spring.

What does this mean for projections of future climate?

In summary, the improvements in CMIP6 shown in this report offer a small degree of increased
confidence in springtime projections of ENSO- and I0D-related rainfall change in most regions,
excluding western Australia. However, as is the nature of understanding and modelling such
complicated processes, there have been no giant leaps in model performance. Nevertheless,
ENSO is one of the better-represented large-scale phenomena in climate models. These large-
scale drivers are only part of the phenomena affecting Australian rainfall, yet they are important
as they provide a predictable component of rainfall variability.



e ‘ Climate
‘ Systems
L 4

National Environmental Science Program

References

Baker, H. S., Woollings, T., & Mbengue, C. (2017). Eddy-driven jet sensitivity to diabatic
heating in an idealized GCM. Journal of Climate, 30(16), 6413-6431.
https://doi.org/10.1175/jcli-d-16-0864.1

Bi, D., Dix, M, Marsland, S., O'Farrell, S., Sullivan, A., Bodman, R., Law, R., Harman, I.,
Srbinovsky, J., Rashid, H. A., Dobrohotoff, P., Mackallah, C., Yan, H., Hirst, A., Savita, A.,
Boeira Dias, F., Woodhouse, M., Fiedler, R. & Heerdegen, A. (2020). Configuration and
spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth
System Simulator Coupled Model, Journal of Southern Hemisphere Earth Systems Science,
70(1), 225-251. hitps://doi.org/10.1071/ES19040

Bi, D., Wang, G., Cai, W., Santoso, A., Sullivan, A., Ng, B., & Jia, F. (2022). Improved
simulation of ENSO variability through feedback from the equatorial Atlantic in a pacemaker
experiment. Geophysical Research Letters, 49(2), e2021GL096887.
https://doi.org/10.1029/2021GL096887

Bracegirdle, T. J., Holmes, C. R., Hosking, J. S., Marshall, G. J., Osman, M., Patterson, M.,
& Rackow, T. (2020). Improvements in circumpolar Southern Hemisphere extratropical
atmospheric circulation in CMIP6 compared to CMIP5. Earth and Space Science, 7(6),
€2019EA001065. https://doi.org/10.1029/2019EA001065

Cai, W., & Cowan, T. (2006). SAM and regional rainfall in IPCC AR4 models: Can
anthropogenic forcing account for southwest Western Australian winter rainfall reduction?,
Geophysical. Research Letters, 33(24), L24708. https://doi.org/10.1029/2006GL028037

Cai, W., van Rensch, P., Cowan, T., & Sullivan, A. (2010). Asymmetry in ENSO
Teleconnection with Regional Rainfall, Its Multidecadal Variability, and Impact. Journal of
Climate, 23(18), 4944—4955. https://doi.org/10.1175/2010JCLI3501.1

Cai, W., van Rensch, P., Cowan, T., & Hendon, H. H. (2012). An Asymmetry in the 10D and
ENSO Teleconnection Pathway and Its Impact on Australian Climate, Journal of Climate,
25(18), 6318-6329. https://doi.org/10.1175/JCLI-D-11-00501.1

Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., &
McPhaden, M. J. (2018). Increased variability of eastern Pacific El Nifio under greenhouse
warming. Nature, 564, 201-206. hittps://doi.org/10.1038/s41586-018-0776-9

Cai, W., Ng, B., Wang, G., Santoso, A., Wu, L. & Yang, K. (2022). Increased ENSO sea
surface temperature variability under four IPCC emission scenarios. Nature Climate Change,
12, 228-231. https://doi.org/10.1038/s41558-022-01282-z

Chung, C. T. Y., & Power, S. B., (2017). The non-linear impact of El Nifio, La Nifia and the
Southern Oscillation on seasonal and regional Australian precipitation. Journal of Southern
Hemisphere Earth Systems Science, 67(1). 25-45. https://doi.org/10.1071/ES17004

Climate Systems Hub | Co-design guide 2023 29


https://doi.org/10.1175/jcli-d-16-0864.1
https://doi.org/10.1071/ES19040
https://doi.org/10.1029/2021GL096887
https://doi.org/10.1029/2019EA001065
https://doi.org/10.1029/2006GL028037
https://doi.org/10.1175/2010JCLI3501.1
https://doi.org/10.1175/JCLI-D-11-00501.1
https://doi.org/10.1038/s41586-018-0776-9
https://doi.org/10.1038/s41558-022-01282-z

V- ‘ Climate
‘ Systems
L 4

National Environmental Science Program

Chung, C. T. Y., Boschat, G., McGregor, S., Delage, F., Sullivan, A. (2022) The role of the
Tropical Atlantic in modulating Tropical Pacific variability, Climate Dynamics. In review

Deng, X., Perkins-Kirkpatrick, S. E., Lewis, S. C., & Ritchie, E. A. (2021). Evaluation of
extreme temperatures over Australia in the historical simulations of CMIP5 and CMIP6
models. Earth's Future, 9(7), e2020EF001902. https://doi.org/10.1029/2020EF001902

di Virgilio, G., Ji, F., Tam, E., Nishant, N., Evans, J. P., Thomas, C., Riley, M. L., Beyer, K.,
Grose, M. R., Narsey, S. & Delage, F. (2022). Selecting CMIP6 GCMs for CORDEX
dynamical downscaling: Model performance, independence, and climate change signals.
Earth's Future, 10(4), e2021EF002625. https://doi.org/10.1029/2021EF002625

Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S., Zhou, C., &
Andrews, T. (2020). Intermodel Spread in the Pattern Effect and Its Contribution to Climate
Sensitivity in CMIP5 and CMIP6 Models, Journal of Climate, 33(18), 7755-7775.
https://doi.org/10.1175/JCLI-D-19-1011.1

Evans, A., Jones, D.A., Smalley, R., & Lellyett, S. (2020). An enhanced gridded rainfall
analysis scheme for Australia. Bureau of Meteorology Research Report. No. 41.

Fan, X., Miao, C., Duan, Q., Shen, C., & Wu, Y. (2020). The performance of CMIP6 versus
CMIPS5 in simulating temperature extremes over the global land surface. Journal of
Geophysical Research: Atmospheres, 125(18), €2020JD033031.
https://doi.org/10.1029/2020JD033031

Garcia-Villada, L. P., Donat, M. G., Angélil, O. & Taschetto, A. S. (2020). Temperature and
precipitation responses to El Nifio-Southern Oscillation in a hierarchy of datasets with
different levels of observational constraints. Climate Dynamics, 55, 2351-2376.
https://doi.org/10.1007/s00382-020-05389-x

Goyal, R., Gupta, A. S., Jucker, M., & England, M. H. (2021). Historical and projected
changes in the Southern Hemisphere surface westerlies. Geophysical Research Letters,
48(4), e2020GL090849. https://doi.org/10.1029/2020GL090849

Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A. J., Bador, M., Boschat, G., Chung, C.,
Kajtar, J. B., Rauniyar, S., Freund, M. B., Lyu, K., Zhang, X., Wales, S., Trenham, C.,
Holbrook, N. J., Cowan, T., Alexander, L., Arblaster, J. M. & Power, S. (2020). Insights from
CMIP6 for Australia's future climate. Earth's Future, 8(5), e2019EF001469.
https://doi.org/10.1029/2019EF001469

Grose, M. R., Narsey, S., Trancoso, R., Mackallah, C., Delage, F., Dowdy, A., Di Virgilio G.,
Watterson, I., Dobrohotoff P., Rashid, H. A., Rauniyar S., Henley B., Thatcher M., Skytus J.,
Abramowitz, G., Evans J. P., Su, C-H. & Takbash, A. (2022) A CMIP6-based multi-model
downscaling sparse matrix for climate projections over Australia, in review.

Gutiérrez, J. M., Jones, R. G., Narisma, G.T., Alves, L. M., Amjad, M., Gorodetskaya, I.V.,
Grose, M., Klutse, N. A. B., Krakovska, S., Li, J., Martinez-Castro, D., Mearns, L. O.,
Mernild, S. H., Ngo-Duc, T., van den Hurk, B. & Yoon, J-H. (2021). Atlas. In Climate Change
2021: The Physical Science Basis. Contribution of Working Group | to the Sixth Assessment

Climate Systems Hub | Co-design guide 2023 30


https://doi.org/10.1029/2020EF001902
https://doi.org/10.1029/2021EF002625
https://doi.org/10.1175/JCLI-D-19-1011.1
https://doi.org/10.1029/2020JD033031
https://doi.org/10.1007/s00382-020-05389-x
https://doi.org/10.1029/2020GL090849
https://doi.org/10.1029/2019EF001469

4 ‘ Climate
‘ Systems
L 4

National Environmental Science Program

Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A.
Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.l. Gomis, M.
Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekgi, R.
Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, pp. 1927-2058, doi:10.1017/9781009157896.021.

Hendon, H. H., Thompson, D. W. J., & Wheeler, M. C. (2007). Australian rainfall and
surface temperature variations associated with the Southern Hemisphere annular mode.
Journal of Climate, 20, 2452-2467. https://doi.org/10.1175/JCL14134.1

Hope, P., Timbal, B. & Fawcett, R. (2010). Associations between rainfall variability in the
southwest and southeast of Australia and their evolution through time. International Journal
of Climatology, 30, 1360-1371. https://doi.org/10.1002/joc.1964

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working
Group | to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y.
Chen, L. Goldfarb, M.l. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.
Maycock, T. Waterfield, O. Yelek¢i, R. Yu, and B. Zhou (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2391 pp.
doi:10.1017/9781009157896.

Jourdain, N. C., Gupta, A. S., Taschetto, A. S., Ummenhofer, C. C., Moise, A. F., Ashok, K.
(2013). The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis
data and the CMIP3/CMIP5 simulations. Climate Dynamics, 41, 3073-3102.
https://doi.org/10.1007/s00382-013-1676-1

King, A. D., Donat, M. G., Alexander, L. V. & Karoly, D. J. (2014). The ENSO-Australian
rainfall teleconnection in reanalysis and CMIP5. Climate Dynamics. 44, 2623-2635.
https://doi.org/10.1007/s00382-014-2159-8

Liguori, G., McGregor, S., Singh, M., Arblaster, J., & Di Lorenzo, E. (2022). Revisiting ENSO
and 10D contributions to Australian precipitation. Geophysical Research Letters, 49,
€2021GL094295. https://doi.org/10.1029/2021GL094295

Marshall GJ. 2003. Trends in the Southern Annular Mode from observations and reanalyses.
Journal of Climate, 16: 4134—4143.

McGregor, S., Cassou C., Kosaka Y., & Philips, A. S. (2022). Projected ENSO
teleconnection changes in CMIP6. Geophysical Research Letters, 49, e2021GL097511.
https://doi.org/10.1029/2021GL097511

McKenna, S., Santoso, A., Gupta, A. S., Taschetto, A. S. & Cai, W. (2020). Indian Ocean
Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Science Reports,
10, 11500. https://doi.org/10.1038/s41598-020-68268-9

Meneghini, B., Simmonds, I., & Smith, I. N. (2007). Association between Australian rainfall
and the Southern Annular Mode. International Journal of Climatology, 27, 109-121.
https://doi.org/10.1002/joc.1370

Climate Systems Hub | Co-design guide 2023 31


https://doi.org/10.1175/JCLI4134.1
https://doi.org/10.1002/joc.1964
https://doi.org/10.1007/s00382-013-1676-1
https://doi.org/10.1007/s00382-014-2159-8
https://doi.org/10.1029/2021GL094295
https://doi.org/10.1029/2021GL097511
https://doi.org/10.1038/s41598-020-68268-9
https://doi.org/10.1002/joc.1370

4 ‘ Climate
‘» Systems
L 4

National Environmental Science Program

Rashid, H. A., Sullivan, A., Dix, M., et. al. (2022). Evaluation of climate variability and
change in ACCESS historical simulations for CMIP6. Journal of Southern Hemisphere Earth
Systems Science, 72(2), 73-92. https://doi.org/10.1071/ES21028

Santoso, A., Hendon, H., Watkins, A., Power, S., Dommenget, D., England, M. H.,
Frankcombe, L., Holbrook, N. J., Holmes, R., Hope, P., Lim, E.-P., Luo, J.-J., McGregor, S.,
Neske, S., Nguyen, H., Pepler, A., Rashid, H., Gupta, A. S., Taschetto, A. S., Delage, F.
(2019). Dynamics and predictability of EI Nifio—Southern Oscillation: An Australian
Perspective on Progress and Challenges. Bulletin of the American Meteorological Society,
100(3), 403-420. https://doi.org/10.1175/BAMS-D-18-0057.1

Swart, N. C., Fyfe, J. C., Gillett, N., & Marshall, G. J. (2015). Comparing trends in the
southern annular mode and surface westerly jet. Journal of Climate, 28(22), 8840-8859.
https://doi.org/10.1175/jcli-d-15-0334.1

Taschetto, A. S., Gupta, A. S., Jourdain, N. C., Santoso, A., Ummenhofer, C. C., & England,
M. H. (2014). Cold Tongue and Warm Pool ENSO Events in CMIP5: Mean State and Future
Projections. Journal of Climate, 27(8), 2861-2885. hitps://doi.org/10.1175/JCLI-D-13-
00437.1

Ummenhofer, C. C., Sen Gupta, A., Briggs, P. R., England, M. H., MciIntosh, P. C., Meyers,
G. A., Pook, M. J., Raupach, M. R., & Risbey, J. S. (2011). Indian and Pacific Ocean
Influences on Southeast Australian Drought and Soil Moisture. Journal of Climate, 24(5),
1313-1336. https://doi.org/10.1175/2010JCLI3475.1

Wang, G. & Cai, W. (2020). Two-year consecutive concurrences of positive Indian Ocean
Dipole and Central Pacific El Nifio preconditioned the 2019/2020 Australian “black summer”
bushfires. Geoscience Letters, 7, 19. https://doi.org/10.1186/s40562-020-00168-2

Weller, E., & Cai, W. (2013). Asymmetry in the IOD and ENSO Teleconnection in a CMIP5
Model Ensemble and Its Relevance to Regional Rainfall. Journal of Climate, 26(14), 5139—-
5149. https://doi.org/10.1175/JCLI-D-12-00789.1

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein,
S. A. & Taylor, K. E. (2020). Causes of higher climate sensitivity in CMIP6 models.
Geophysical Research Letters, 47(1), e2019GL085782.
https://doi.org/10.1029/2019GL085782

Zhang, X., He, B., Liu, Y., Bao, Q., Zheng, F., Li, J., Hu, W., & Wu, G. (2021). Evaluation of
the seasonality and spatial aspects of the Southern Annular Mode in CMIP6 models.
International Journal of Climatology, 42(7), 3820-3837. https://doi.org/10.1002/joc.7447

Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L.,
Wang, Y. P. & Srbinovsky, J. (2020). The Australian Earth System Model: ACCESS-
ESM1.5. Journal of Southern Hemisphere Earth Systems Science, 70, 193-214.
https://doi.org/10.1071/ES19035

Climate Systems Hub | Co-design guide 2023 32


https://doi.org/10.1071/ES21028
https://doi.org/10.1175/BAMS-D-18-0057.1
https://doi.org/10.1175/jcli-d-15-0334.1
https://doi.org/10.1175/JCLI-D-13-00437.1
https://doi.org/10.1175/JCLI-D-13-00437.1
https://doi.org/10.1175/2010JCLI3475.1
https://doi.org/10.1186/s40562-020-00168-2
https://doi.org/10.1175/JCLI-D-12-00789.1
https://doi.org/10.1029/2019GL085782
https://doi.org/10.1002/joc.7447
https://doi.org/10.1071/ES19035

Appendix

In this appendix we present the model-by-model correlation between seasonal rainfall and
ENSO (all years, and La Nifia and EI Nifio years separately), IOD, and SAM metrics for
available CMIP6 models. Models are ranked according to their ability to simulate seasonal
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teleconnection spatial patterns to Pacific and Indian ocean sea surface temperature

variability.

We do this by first calculating the time-based correlation between rainfall and
ENSO/IOD/SAM metrics for each model and each season across the Australian region. The
resulting correlation maps for each model are then compared to the observed (AGCD)
correlation map, and the models are ranked according to the spatial correlation between the

model and observed maps.

ENSO-rainfall correlation
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Fig Al | Correlation between DJF Nifio 3.4 index and DJF rainfall for available CMIP6 models, ranked
by spatial correlation with observed N3.4-rainfall correlation patterns. Stippling indicates statistical
significance at the 90% confidence level according to a t test.
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sorted by spatial correlation with observed N3.4-rainfall correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A3 | Correlation between JJA Nifio 3.4 index and JJA rainfall for available CMIP6 models, sorted by
spatial correlation with observed N3.4-rainfall correlation patterns. Stippling indicates statistical
significance at the 90% confidence level according to a t test.
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Fig A4 | Correlation between SON Nifo 3.4 index and SON rainfall for available CMIP6 models, sorted
by spatial correlation with observed N3.4-rainfall correlation patterns. Stippling indicates statistical
significance at the 90% confidence level according to a t test.
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Fig A5 | Correlation between DJF Nifio 3.4 index and DJF rainfall for available CMIP6 models for
negN3.4 years only. For this study, negN3.4 years are classified as years when DJF Nifio 3.4 <

0. Models are sorted by spatial correlation with observed correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A6 | Correlation between MAM Nifio 3.4 index and MAM rainfall for available CMIP6 models for
negN3.4 years only. For this report, neg3.4 years are classified as years when DJF Nifio 3.4 <

0. Models are sorted by spatial correlation with observed correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A7 | Correlation between JJA Nifio 3.4 index and JJA rainfall for available CMIP6 models for
negN3.4 years only. For this study, negN3.4 years are classified as years when DJF Nifio 3.4 <

0. Models are sorted by spatial correlation with observed correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A8 | Correlation between SON Nifio 3.4 index and SON rainfall for available CMIP6 models for
negN3.4 years only. For this study, negN3.4 years are classified as years when DJF Nifio 3.4 <

0. Models are sorted by spatial correlation with observed correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A9 | Correlation between DJF Nifio 3.4 index and DJF rainfall for available CMIP6 models for
posN3.4 years only. For this report, posN3.4 years are classified as years when DJF Nifio 3.4 >

0. Models are sorted by spatial correlation with observed correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A10 | Correlation between MAM Nifio 3.4 index and MAM rainfall for available CMIP6 models for
posN3.4 years only. For this report, posN3.4 years are classified as years when DJF Nifio 3.4 >

0. Models are sorted by spatial correlation with observed correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A11 | Correlation between JJA Nifio 3.4 index and JJA rainfall for available CMIP6 models for
posN3.4 years only. For this report, posN3.4 years are classified as years when DJF Nifio 3.4 >

0. Models are sorted by spatial correlation with observed correlation patterns. Stippling indicates
statistical significance at the 90% confidence level according to a t test.
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Fig A12 | Correlation between SON Nifio 3.4 index and SON rainfall for available CMIP6 models for El
Nifio years only. For this report, El Nifio years are classified as years when DJF Nifio 3.4 > 0. Models
are sorted by spatial correlation with observed correlation patterns. Stippling indicates statistical
significance at the 90% confidence level according to a t test.
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Fig A13 | Correlation between JIA DMI index and JJA rainfall for available CMIP6 models, sorted by
spatial correlation. Stippling indicates statistical significance at the 90% confidence level according to
attest.
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Fig A14 | Correlation between SON DMI index and SON rainfall for available CMIP6 models, sorted by
spatial correlation with observations. Stippling indicates statistical significance at the 90%
confidence level according to a t test.
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Figure A15 | Correlation between DJF rainfall and the DJF SAM index in each CMIP6 model, sorted by
spatial correlation with observations. Stippling indicates statistical significance at the 90%
confidence level according to a t test.
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Figure A16 | Correlation between MAM rainfall and the MAM SAM index in each CMIP6 model,
sorted by spatial correlation with observations. Stippling indicates statistical significance at the 90%
confidence level according to a t test.
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Figure A17 | Correlation between JJA rainfall and the SAM index in each CMIP6 model, sorted by
spatial correlation with observations. Stippling indicates statistical significance at the 90%
confidence level according to a t test.
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Figure A18 | Correlation between SON rainfall and the SON SAM index in each CMIP6 model, sorted
by spatial correlation with observations. Stippling indicates statistical significance at the 90%
confidence level according to a t test.
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